

MDSOLS-RD

VERSION 1.0 du 14 Mai 2013

Guide de la mise en service du MDSOLS - Barrières SOLARIS

/ Avertissement

Avertissement

Réserve de propriété

Les informations présentes dans ce manuel sont susceptibles d'être modifiées sans avertissement.

Les informations citées dans ce document à titre d'exemples, ne peuvent en aucun cas engager la responsabilité de TIL Technologies. Les sociétés, noms et données utilisées dans les exemples sont fictifs, sauf notification contraire.

Toutes les marques citées sont des marques déposées par leur propriétaire respectif.

Aucune partie de ce document ne peut être ni altérée, ni reproduite ou transmise sous quelque forme et quelque moyen que ce soit sans l'autorisation expresse de TIL Technologies.

Suivi et mise à jour du document

Date	Indice	Modifications	Auteur
22 Avril 2013	0.1	Nouvelle documentation	A.EN
14 Mai 2013	1.0	Validation du document par C.CO	A.EN

/ Avertissement

Conventions de lecture

Par convention, l'opérateur de ce manuel dispose de tous les droits sur les fonctions présentées.

Ci-après, un récapitulatif de la typographie utilisée dans ce manuel :

Syntaxe

Cette boîte indique un extrait de code ou de fichier de configuration.

Astuce

Cette boîte indique une astuce de programmation ou d'utilisation.

Note / Remarque

Cette boîte indique une information complémentaire ou importante à retenir.

Attention

Cette boîte attire votre attention sur une information devant éviter un défaut de fonctionnement.

Danger

Cette boîte signale un danger potentiel entraînant une perte de données ou un risque à la personne.

Dans une procédure :

- La police de texte est en "Gras" : désigne le nom du bouton à cliquer.
- La police de texte est en "Italique" : désigne le nom de la fenêtre abordée.

SOMMAIRE

Q	MISE EN SERVICE DU MODULE MDSOLS	7
	Module MDSOLS-RD	9
	Configuration du concentrateur MAXIBUS III	14
Q	ANNEXES & FAQ	21
	Annexes	23
	₽ FAQ	25
O	INDEX	27

Mise en service du module MDSOLS

MISE EN SERVICE DU MODULE MDSOLS

Module MDSOLS-RD

Configuration du concentrateur MAXIBUS III

Mise en service du module MDSOLS / Module MDSOLS-RD

Module MDSOLS-RD

Présentation des modules

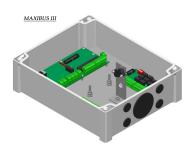
Le module déporté *MDSOLS-RD* permet d'interfacer un concentrateur *MAXIBUS III SORHEA*® avec un *UTIL* ou *TILLYS* à travers une liaison à 2 fils (RS485).

Ce module est utilisé pour établir la connexion de barrières à infrarouge actif sans fil longue porté.

Il peut gérer de 2 à 24 colonnes infrarouge de type *SOLARIS*, contenant chacune 1 à 4 cartes de gestion. Cela correspond à 64 cartes de gestion maximum (32 Rx et 32 Tx).

Le nombre maximum de cartes de gestion gérables est en fonction de l'adresse du module *MDSOLS-RD*.

Un UTIL peut gérer 1 module MDSOLS-RD par bus.


Le concentrateur *MAXIBUS III* permet de centraliser les informations d'alarmes des produits SORHEA®.

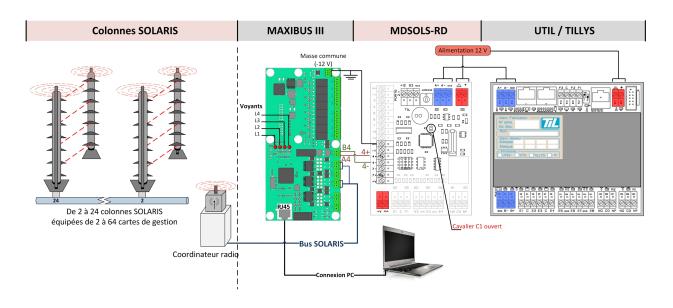
Il se compose d'une carte mère gérant :

- Un bus réseau
- Un bus vers le superviseur MICRO-SESAME (via MDSOLS-RD)
- 8 contacts d'alarmes.

Un concentrateur MAXIBUS III peut gérer un seul type d'équipement SORHEA®.

Compatibilité des produits

La version 1.0 actuelle du MDSOLS-RD est compatible uniquement avec la version 2.11 du concentrateur MAXIBUS III datant du 14/02/2012.


Raccordement du MDSOLS-RD au concentrateur MAXIBUS III

Procéder au raccordement du module MDSOLS-RD au concentrateur MAXIBUS III conformément au schéma suivant :

Mise en service du module MDSOLS / Module MDSOLS-RD

ATTENTION

Si la distance entre les 2 cartes est supérieure à 100 m, alors il faut :

- · utiliser un câble data a paire torsadée,
- et un câble l'écran aux deux extrémités.

Pour que le MDSOLS reçoive les alarmes du concentrateur MAXIBUS III, il est nécessaire que le concentrateur soit en tension (voyant L1 allumé) et configuré (voyant L2 allumé)

Ci-après un tableau récapitulatif des états des voyants du MAXIBUS III:

Voyant	État	Description		
L1	Allumé	En tension		
LI	Éteint	Non alimenté		
L2	Allumé	Concentrateur MAXIBUS III configuré		
LZ	Éteint	Concentrateur MAXIBUS III non configuré		
L3	Non utilisé			
L4	Clignotant	Configuration en cours		

Ressources consommées

Les ressources consommées par ce module sont les suivantes :

Entrées/sorties	Clavier à led ou aff.	Lecteurs	Entrées analogiques
de 1 à 16 *			

Mise en service du module MDSOLS / Module MDSOLS-RD

Note

* La consommation des ressources dépend de la position de la roue codeuse.

Le tableau de la section suivante (Plan d'adressage) permet de calculer les ressources consommées.

Plan d'adressage

La roue codeuse indique l'adresse du module *MDSOLS-RD*. Cela fixe aussi le nombre maximum des unités de gestion *G-FENCE* gérées.

Exemple d'utilisation de la roue codeuse

Si le MDGFS occupe l'adresse 1 => Plus aucune adresse sur le bus n'est disponible pour d'autres modules déportés.

Si le MDGFS occupe l'adresse 0 => Les adresses de 1 à F sont disponibles pour d'autres modules déportés.

Adresse MDSOLS	Nbre de cartes de gestion SOLARIS	Nbre MDI équivalent	Registre de présence *
1	64	16	Wx1
2	60	15	Wx5
3	56	14	Wx9
4	52	13	Wx13
5	48	12	Wx17
6	44	11	Wx21
7	40	10	Wx25
8	36	9	Wx29
9	32	8	Wx33
А	28	7	Wx34
В	24	6	Wx35
С	20	5	Wx36
D	16	4	Wx37
E	12	3	Wx38
F	8	2	Wx39
0	4	1	Wx40

^{*} x = bus de raccordement (A ou B).

Mise en service du module MDSOLS / Module MDSOLS-RD

Liste des registres

A chaque carte de gestion *SOLARIS* est affecté 3 ou 4 bits de synthèse. Ces 4 bits correspondent aux alarmes émises par le concentrateur :

• INT : Intrusion (pour les cartes de gestion SOLARIS impaire - carte Rx)

• Tech: Disqualification + Alarme Auto-Protection + Alarme CAA

• VBatt : Alarme Batterie basse

• Radio : Alarme Perte radio

Les alarmes sont vues comme des entrées (Dxxx, Gxxx) et donc disponibles dans les fonctions TILLYS ou via le microcode.

Les 4 bits émis par le concentrateur sont affectés à des registres de l'UTIL conformément à ce tableau :

Adresse	Adresse carte de	Ca	arte Rx (a	dresse in	npaire)	Carte Tx	(adresse	paire)	Registres	de sortie	Registre W
MDSOLS	gestion	INT	Tech	VBatt	Radio	Tech	VBatt	Radio	R1	S2	
1	63-64	Dx011	Dx012	Dx013	Dx014	 Dx016	Dx017	Dx018	Xx011	V _V 012	Wx1
1	61-62	Gx011	Gx012	Gx013	Gx014	 Gx016	Gx017	Gx018	XXUII	XXU1Z	VVXI
2	59-60	Dx021	Dx022	Dx023	Dx024	 Dx026	Dx027	Dx028	Xx021	V _V 022	Wx5
2	57-58	Gx021	Gx022	Gx023	Gx024	 Gx026	Gx027	Gx028	XXU21	XXU22	VVX3
3	55-56	Dx031	Dx032	Dx033	Dx034	 Dx036	Dx037	Dx038	Xx031	A^U33	Wx9
3	53-54	Gx031	Gx032	Gx033	Gx034	 Gx036	Gx037	Gx038	77031	AXOSZ	VVX3
4	51-52	Dx041	Dx042	Dx043	Dx044	 Dx046	Dx047	Dx048	Xx041	Yv042	Wx13
4	49-50	Gx041	Gx042	Gx043	Gx044	 Gx046	Gx047	Gx048	7,7041	AXU42	WXI3
5	47-48	Dx051	Dx052	Dx053	Dx054	 Dx056	Dx057	Dx058	Xx051	V ₂ 052	Wx17
J	45-46	Gx051	Gx052	Gx053	Gx054	 Gx056	Gx057	Gx058	VXO21	XXU32	VVX17
6	43-44	Dx061	Dx062	Dx063	Dx064	 Dx066	Dx067	Dx068	Xx061	V ₂ 062	Wx21
O	41-42	Gx061	Gx062	Gx063	Gx064	 Gx066	Gx067	Gx068	VXOOT	AXU02	VVXZI
7	39-40	Dx071	Dx072	Dx073	Dx074	 Dx076	Dx077	Dx078	V ₂ 071	Xx072	Wx25
,	37-38	Gx071	Gx072	Gx073	Gx074	 Gx076	Gx077	Gx078	XXU/1	XXU72	
8	35-36	Dx081	Dx082	Dx083	Dx084	 Dx086	Dx087	Dx088	Vv001	Xx082	Wx29
0	33-34	Gx081	Gx082	Gx083	Gx084	 Gx086	Gx087	Gx088	VXOOT		
9	31-32	Dx091	Dx092	Dx093	Dx094	 Dx096	Dx097	Dx098	Xx091	Vv002	Wx33
9	29-30	Gx091	Gx092	Gx093	Gx094	 Gx096	Gx097	Gx098	7,091	AXU92	\XU92 \\ \VX33
Α	27-28	Dx101	Dx102	Dx103	Dx104	 Dx106	Dx107	Dx108	Xx101	Vv102	\A/v2.4
A	25-26	Gx101	Gx102	Gx103	Gx104	 Gx106	Gx107	Gx108	YXIUI	XX102	Wx34
В	23-24	Dx111	Dx112	Dx113	Dx114	 Dx116	Dx117	Dx118	Xx111	Vv112	Wx35
ь	21-22	Gx111	Gx112	Gx113	Gx114	 Gx116	Gx117	Gx118	VXIII	XX112	X112 VVX35
С	19-20	Dx121	Dx122	Dx123	Dx124	 Dx126	Dx127	Dx128	Xx121	V _V 122	Wx36
C	17-18	Gx121	Gx122	Gx123	Gx124	 Gx126	Gx127	Gx128	VXIZI	XX122	WXSO
D	15-16	Dx131	Dx132	Dx133	Dx134	 Dx136	Dx137	Dx138	Xx131	Vv122	Wx37
U	13-14	Gx131	Gx132	Gx133	Gx134	 Gx136	Gx137	Gx138	VX131	VXTOC	VV X 3 /
Е	11-12	Dx141	Dx142	Dx143	Dx144	 Dx146	Dx147	Dx148	Xx141	Vv1/12	Wx38
E .	9-10	Gx141	Gx142	Gx143	Gx144	 Gx146	Gx147	Gx148	VX141	\X14Z	VVXOO
F	7-8	Dx151	Dx152	Dx153	Dx154	 Dx156	Dx157	Dx158	Xx151	Vv152	Wx39
г	5-6	Gx151	Gx152	Gx153	Gx154	 Gx156	Gx157	Gx158	VXTOT	VXTO	VVXOS
0	3-4	Dx161	Dx162	Dx163	Dx164	 Dx166	Dx167	Dx168	Vv161	Vv162	Wx40
U	1-2	Gx161	Gx162	Gx163	Gx164	 Gx166	Gx167	Gx168	Xx161 Xx162		VV X40

Dans ce tableau, le petit "x" est à remplacer par la lettre du bus, A ou B, sur lequel est connecté le MDSOLS.

Mise en service du module MDSOLS / Module MDSOLS-RD

Exemple de ressources consommées

Supposons que le réseau de barrière SOLARIS est composé de 7 colonnes de réception. Chaque colonne est équipée de 2 cartes de gestion.

Nous avons un total de 14 cartes de gestion à gérer. Dans ce cas, il faut positionner la roue codeuse du module MDSOLS à l'adresse "**D**".

En conséquent, le module MDSOLS occupe complètement les adresses D, E, F et 0 sur le bus déporté.

Ainsi, le registre de présence est affecté par :

- la perte de communication avec le concentrateur MAXIBUS III
- l'auto-protection du module MDSOLS

Si la valeur du bit est égale à 0 : alors le MDSOLS est présent (contact fermé) et la communication est établie avec le concentrateur MAXIBUS III.

Depuis TILMAN connecté à un UTIL/TILLYS, la commande "Bus A" ou "Bus B" affiche les modules déportés présent sur le bus.

Le module MDSOLS s'affiche sous la forme "SOL-xx", avec xx = nombre de colonnes de réception.

Registres de présence

Pour mémoire, le registre de présence (Wxx) permet de savoir si un module est présent sur le bus secondaire et si le contact d'auto-protection est bien fermé (valeur 0 si présent et contact fermé).

Le nom du registre évolue en fonction de la position de l'adresse sur le commutateur et du bus sur lequel est raccordé le module. Reportez vous au tableau du plan d'adressage pour connaître la valeur du registre W.

ATTENTION

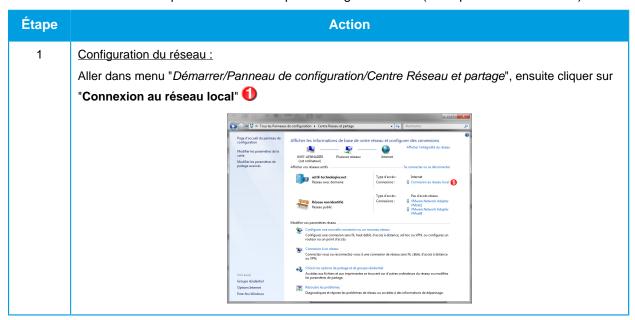
Il faut réinitialiser le module après avoir changé son adresse.

Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III

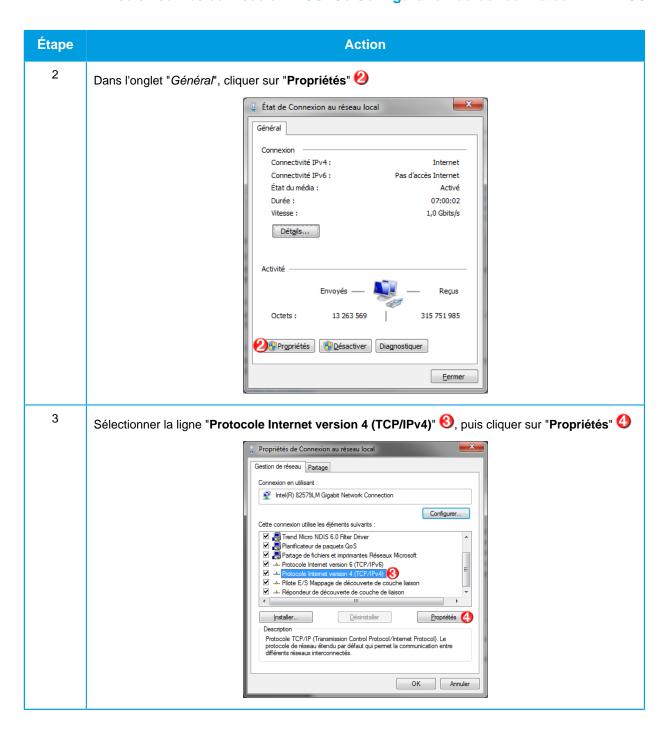
Configuration du concentrateur MAXIBUS III

Le concentrateur MAXIBUS III SORHEA®

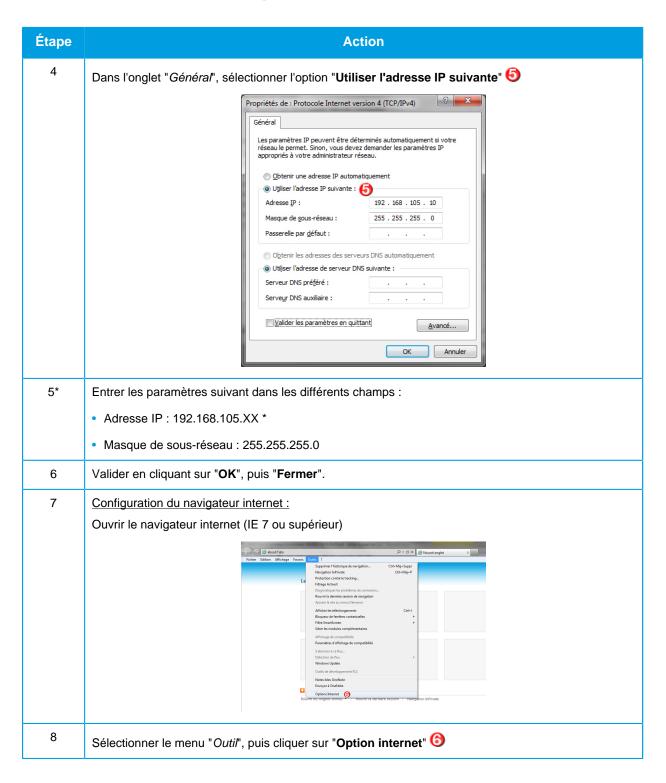
Le concentrateur est le superviseur du réseau des détecteurs SORHEA®. Ces détecteurs peuvent être des colonnes MAXIRIS III, SOLARIS ou des unités de gestion G-FENCE.


Le concentrateur *MAXIBUS III* se compose d'une carte mère gérant un maximum de 3 sorties bus, 8 contacts d'alarmes et de 2 entrées d'alarmes.

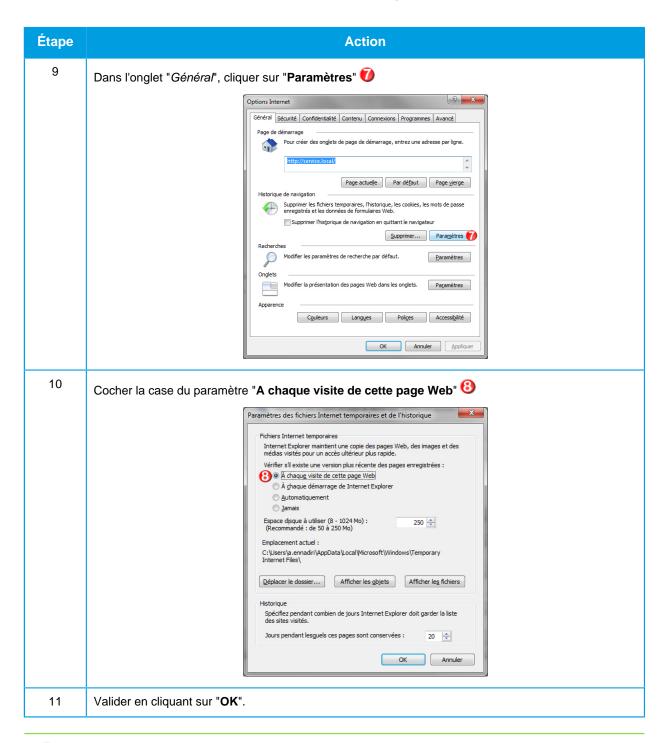
Configuration du PC


Les paramétrages décrits ci-dessous permettent de configurer le PC pour pouvoir établir la connexion entre le PC, le module MDSOLS et les détecteurs SORHEA®.

Le tableau suivant décrit la procédure à suivre pour configurer le PC : (exemple sous Windows 7)


Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III

VERSION 1.0 du 14 Mai 2013



Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III

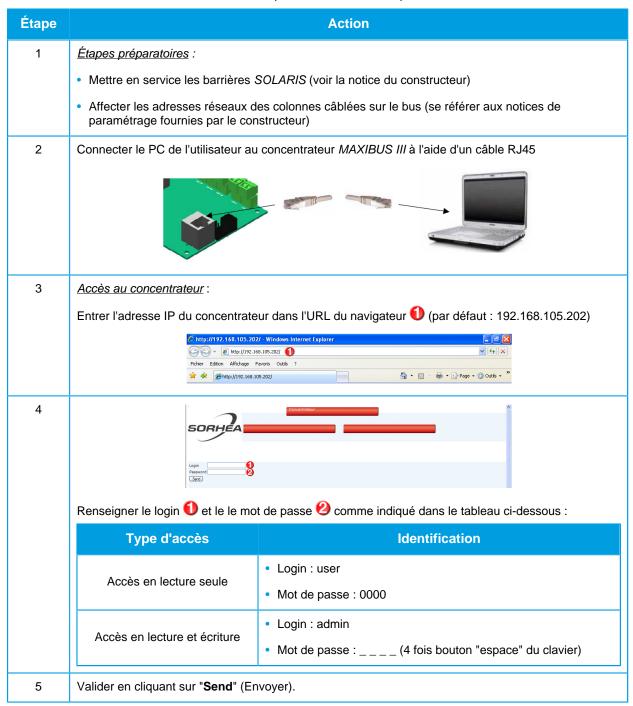
Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III

Note

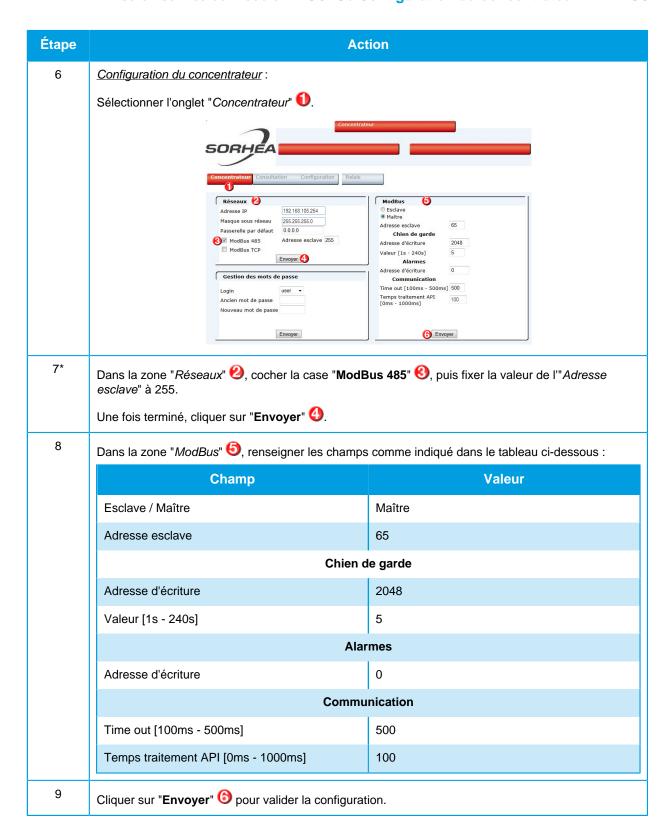
* XX : est à remplacer par un chiffre compris entre 1 et 254 (différent de 202 qui est réservé pour l'adresse par défaut du concentrateur MAXIBUS III). [étape 5]

Paramétrage du concentrateur

Après avoir configuré le PC de l'utilisateur, il est nécessaire :


d'établir la connexion entre le PC et le concentrateur

Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III


• de configurer le concentrateur pour fonctionner correctement avec le module MDSOLS.

Procéder comme dans le tableau ci-dessous pour se connecter et paramétrer le concentrateur :

Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III

VERSION 1.0 du 14 Mai 2013

Mise en service du module MDSOLS / Configuration du concentrateur MAXIBUS III

ATTENTION

* Il faut impérativement cocher la case "**ModBus 485**" pour le fonctionnement du module MDSOLS. [étape 7]

Remarque

Consulter le manuel du constructeur pour plus de détails à propos du serveur web SORHEA® (Changement de l'identifiant, d'adresse IP, fonctions avancées...).

Annexes & FAQ

ANNEXES & FAQ

Annexes & FAQ / Annexes

Annexes

Communication MDSOLS / MAXIBUS III

Le module *MDSOLS-RD* communique avec le concentrateur *MAXIBUS III* en mode "esclave", c'est-à-dire qu'il est en écoute sur le concentrateur sans jamais lui envoyer de requête.

Qu'est ce que cela peut impliquer ?

A l'initialisation du module *MDSOLS*, les registres de l'UTIL associés à ce module ne s'initialisent pas sur l'état actuel des alarmes du concentrateur *MAXIBUS III*.

En mode esclave, le module *MDSOLS* est mis en attente jusqu'à que le concentrateur lui envoi une trame (front montant ou descendant). Cette dernière indique qu'un type d'alarme a changé de valeur (intrusion, disqualification,...).

Liste des alarmes de barrières SOLARIS

Ci-après la liste des alarmes des barrières SOLARIS :

Intitulé	Type d'alarme	SOLARIS Tx	SOLARIS Rx	Répéteur
Intrusion	Alarme intrusion		Х	
Disqualification	Alarme disqualification	Х	Х	
AP	Alarme Auto-protection	Х	Х	Х
CAA	Alarme chapeau anti-appui	Х	Х	
Vbatt	Alarme tension batterie	Х	Х	Х
Perte Radio	Alarme perte radio	Х	Х	Х

Type de barrières SOLARIS

Les barrières à infrarouge actif SOLARIS sont entièrement autonomes et ne nécessitent aucun câblage.

Les informations d'alarmes sont rapatriées par réseau radio sur le concentrateur MAXIBUS III.

L'alimentation se compose d'un panneau solaire et d'un pack batterie assurant une autonomie permanente.

Les barrières à infrarouge actif *SOLARIS* génèrent une information d'alarme sur coupure de deux faisceaux adjacents.

Elles se composent d'une colonne émission (Tx) et d'une colonne réception (Rx) à installer en vis-à-vis sur la distance à protéger, ceci établissant une zone de détection immatérielle et invisible.

Leurs principales caractéristiques sont :

- Portée maximale en extérieur : 75 m
- Barrières équipées de 3 à 10 cellules à infrarouge par direction (avec détection automatique des cellules) sur des hauteurs de 1 m 50, 2 m, 2 m 50 et 3 m
- Colonne simple face (SF) et double face (DF) permettant une grande maîtrise du positionnement des cellules
- 4 canaux infrarouge permettant de différencier les barrières entre elles
- Moyens d'alignement intégrés sur chaque colonne Tx et Rx : viseurs optiques, voyants et buzzer indiquant la qualité de réception du signal reçu

Annexes & FAQ / Annexes

- Chapeau anti-appui intégré
- Options :
 - Panneau solaire supplémentaire
 - Plot béton
 - Embase
 - Fixation murale

Annexes & FAQ / FAQ

FAQ

Tests des barrières SOLARIS et du concentrateur MAXIBUS III

Pour procéder au test de l'ensemble des barrières SOLARIS et du concentrateur *MAXIBUS III*, veuillez vérifier les points suivants :

- les voyants du concentrateur (L1 et L2 allumés, L3 et L4 éteints)
- les paramètres de l'onglet "Concentrateur" depuis le serveur web SORHEA.
- l'onglet "Consultation" correspondant à la liste des équipements connectés
- l'onglet "Historique" correspondant aux évènements listés des équipements

Tests du MDSOLS-RD

Pour procéder au test du module MDSOLS-RD, veuillez vérifier les points suivants :

- la masse commune entre MDSOLS-RD et concentrateur MAXIBUS III
- le câblage bus RS485 (A4 concentrateur -> 4+ MDSOLS-RD)
- la présence MDSOLS-RD sur le bus de l'UTIL (commande bus A / bus B)
- que l'adresse du module MDSOLS-RD correspond au nombre de colonne de réception gérée
- que le cavalier C1 est ouvert (enlevé) sur le MDSOLS-RD (Cavalier servant à faire fonctionner un module avec un UTIL V1 de firmware < 2.61)
- le registre de présence W en fermant l'auto-protection du MDSOLS-RD.

Ceci permettra de vérifier la communication avec le concentrateur

INDEX

Configuration du navigateur internet, 16 Configuration du réseau, 14

Login, 18

M

MAXIBUS III, 10, 14, 18 MAXIBUS III SORHEA, 9 MAXIRIS III, 14 MDSOLS, 9, 10 ModBus, 19 Module déporté MDSOLS-RD, 9 Mot de passe, 18

Ρ

Paramétrage du concentrateur, 17 PC, 14, 17

R

Registre de présence, 13 Roue codeuse, 11

S

Serveur web SORHEA, 18 SOLARIS, 14, 18

Unité de gestion G-FENCE, 14

Voyants, 10